
AIPHES-HD system at TAC KBP 2016: Neural Event Trigger Detection and
Event Type and Realis Disambiguation with Word Embeddings

Todor Mihaylov
Research Training Group AIPHES

Institute for Computational Linguistics
Heidelberg University

mihaylov@cl.uni-heidelberg.de

Anette Frank
Research Training Group AIPHES

Institute for Computational Linguistics
Heidelberg University

frank@cl.uni-heidelberg.de

Abstract

With this work we participate in the TAC-KBP
2016 Event Nugget Track for Event Nugget
Detection. We implement a simple but ef-
fective system which uses a Bi-Directional
LSTM with embeddings short-cuts to the out-
put for Event Trigger detection and simple Lo-
gistic Regression Classifiers with event trigger
context features based on word embeddings
for Event Type and Realis detection. Our post-
submission models yield state-of-the-art re-
sults on the official task dataset. We train and
evaluate our system for English and it can eas-
ily be adapted for Chinese, Spanish or other
languages as our best model uses only word
embeddings as external resources.

1 Introduction

With this work we participate in the TAC-KBP 2016
Event Nugget Track for Event Nugget Detection.
Event Nugget Detection is a task that performs de-
tection of an event trigger and predicts its attributes:
the event type (current tasks distinguish up to 33 se-
mantic types) and a REALIS feature (for instance,
Generic, Actual, Other). In the given example (1)
the event triggers are marked in bold and the at-
tributes are shown in brackets.

(1) The attacke1 [Conflict.Attack, ACTUAL]
killede2 [Life.Die, ACTUAL] seven and in-
jurede3 [Life.Injure, ACTUAL] twenty.

This year’s task is multilingual and includes evalua-
tion data for English, Chinese and Spanish. We train
and evaluate our system for Event Nugget Detec-
tion for English only. Our system uses only Stanford

CoreNLP parses and word embeddings as resources
for training a neural network system, so it can easily
be adapted for Chinese and Spanish.

This rest of the paper is organized as follows: in
Section 2 we present and overview of our system for
the Event Nugget Detection task. In Section 3 we
describe the used datasets, the used evaluation and
scoring and the pre-processing step that we apply
to the data. In Section 4 we describe the training
and tuning of the system as well as the achieved re-
sults. In Section 5 we present an overview of recent
work in the field of event Detection. In Section 6 we
present a brief overview of our work and our best
model.

2 System Overview

Our Event Nugget Detection system consists of 3
modules which can be run independently: Event
Trigger Detection, Event Type classification and
Event Realis Classification.

2.1 Event Trigger Detection

We tackle the Event Trigger Detection task as a se-
quence labeling task. For our official submissions
to the task we initially used the BIO scheme to en-
code the Event Trigger in the sentence tokens, where
B-EVENT marks the beginning token of a trigger
event, I-EVENT a token that is part of the event
span in the golden annotation and is not the event
beginning token and O marks a token that does not
participate as an event trigger in the current sen-
tence. However we later dropped the multi-token
events from training since our post-submission ex-
periments have shown that using multi-word event



triggers in the training yields worse results on the
evaluation datasets, as they contain only single word
event triggers. For the sequence labeling task we
use a bi-directional Long Short-Term Memory (Bi-
LSTM) (Schuster and Paliwal, 1997) based neural
architecture as shown in Figure 1. Each input ex-
ample consists of a sentence as extracted from the
input document in the pre-processing step. In our
base system we implement the first layer as a word
embedding lookup, which retrieves the embedding
vector for each input token of the sentence. The
output of the first layer is fed into a single Bi-
Directional LSTM layer. The output of every left-
to-right LSTM cell and right-to-left LSTM cell is
concatenated and fed to a SoftMax layer which out-
puts one of the BIO classes mentioned above. We
use word2vec (Mikolov et al., 2013) word embed-
dings trained on the Google News 1B corpus and
optimize them during training. We also make exper-
iments with adding Part of Speech (POS) tag em-
beddings as well as the sum of Dependency tag em-
beddings ‘(DEP) for each token. The POS and DEP
type embeddings are randomly initialized and opti-
mized during training. We experiment with differ-
ent combinations of using these three types of word
embeddings. If we use more than one embedding
type (Word embeddings, PoS embeddings or De-
pendency sum embeddings), we concatenate them.
We also experiment with shortcutting, by concate-
nating the retrieved embedding representations with
the output layer of the Bi-LSTMs (see the dashed
arcs in Figure 1).

2.2 Event Type and Realis Detection
For Event Type and Realis classification we train
Logistic Regression classifiers with features based
on word embeddings. We use the following features:

• Averaged word embedding vectors over all to-
kens in the event trigger.

• Averaged word embedding vectors over all to-
kens in the sentence.

• Averaged word embedding vectors for the 2 to-
kens preceding the event trigger and 2 tokens
following the event trigger, if any.

• Averaged word embedding vectors for all to-
kens with a direct connection to the event trig-

ger token in the dependency tree, where the
event trigger is the head in the dependency
triple.

• Averaged word embedding vectors for all to-
kens with a direct connection to the event trig-
ger token in the dependency tree, where the
event trigger is the not the head in the depen-
dency triple.

• Averaged word embedding vectors for all to-
kens with a direct connection to the event trig-
ger token in the dependency tree. This includes
all tokens from the previous two features.

The above centroid word vectors are used as features
with dimensionality of the chosen embedding size.
In our model we chose word embeddings of size
300. A similar approach including semantic features
based on word embeddings yielded very good re-
sults in other tasks such as Discourse Relation Sense
classification (Mihaylov and Frank, 2016). Com-
munity Question Answering (Mihaylov and Nakov,
2016; Mihaylova et al., 2016) and story understand-
ing (Mihaylov and Frank, 2017).

3 Data and Evaluation

In this section we present the used datasets, data pre-
porcessing that we apply and the scoring and evalu-
ation for the task.

3.1 Datasets
We use the training data provided by the task
organizers - LDC2016E36, which contains the
data originally released for the DEFT 2014 Event
Nugget Evaluation (LDC2014E121, LDC2015E03,
LDC2015E69) and data for the TAC KBP 2015
Event Nugget Tracks (LDC2015E73, LDC2015E94,
LDC2015R26). For the official evaluation and post-
submission experiments we use the provided evalu-
ation data (LDC2016E72) which contains 44 doc-
uments in English. According to the structure
of the data directories in the LDC2016E36 and
LDC2016E72, we split the provided data into 5
parts, as shown in Table 1, specified in the Data set
column. In Table 1, column Docs shows the number
of documents in every subset, column Name con-
tains the name of the subset or a combined name of
combination of subsets used in the text below for



Figure 1: Event Trigger labeling module neural architecture. Dotted lines show optional modifications
using additional dependency type embeddings and part of speech embeddings as well as short-cutting the
embeddings from the input to the Bi-LSTM output layer.

convenience. Column Tokens shows the number of
tokens after the pre-processing step described below
and Events show the number of events (tokens with
non-zero (non-O) label) among all tokens in the set.
We can see that train, dev and eval have different
distributions of non-zero event labels.

For most of our experiments we train our sys-
tem on train (combined train 2014, eval 2014 and
train 2015), tune the model on dev (represented by
eval 2015) and evaluate on eval (represented by eval
2016) for our official submission.

3.2 Pre-processing

Before we feed our system with the input data, we
pre-process the raw HTML files to extract raw text
and text tokens. For each given HTML document
we perform the following text clearing operations:

Data sub-set Docs Name Tokens Events
train 2014 151

train 320k 16keval 2014 200
train 2015 158
eval 2015 202 dev 180k 9k
eval 2016 44 eval 105k 3.5k

Table 1: Data used for training and evaluation.
The provided dataset parts are combined/renamed
for convenience to train, dev, eval. The number of
tokens and events for train includes the sum of all
three sub-sets train 2014, eval 2014 and train 2015

• Replace img HTML tags with the IMG token.

• Replace opening a (hyperlink) tags with the
HYPERLINK token.



• Replace all other tags with a sequence of empty
space symbols corresponding to their character
length.

We preserve character offsets by inserting additional
empty space characters when necessary. We then
process the clear text of the document with the Stan-
ford CoreNLP (Manning et al., 2014) parser in or-
der to obtain sentence and token splitting, as well
as Part of Speech and dependency tags for every to-
ken. For every token in the parsed data we check if
its offset overlaps with tokens in the golden annota-
tion (extracted from the provided annotations in Brat
format) and generate and assign them labels either
B-EVENT or I-EVENT1 or O if they do not match.
We use the output of the Stanford CoreNLP parser
as an input data format for our system.

Event Types In the TAC 2016 Event Nugget De-
tection task, only 18 event types are selected for
evaluation, in contrast to 38 on the TAC 2015 Event
Nugget Detection task. The selected types are
shown in Table 2.

3.3
Evaluation and Scoring The official scoring2 on the
Event Nugget Detection tasks is performed by the
official scorer provided by the organizers3. This
evaluation provides scores in terms of macro- and
micro-average precision, recall and f-scores for
Event Trigger Detection (plain), Event Type dis-
ambiguation (mention type) and Event Realis Dis-
ambiguation (realis status) and an overall summary
score (mention type+realis status). These evalua-
tions are used for the official submissions. Note that
the score for Event Type and Realis detection is cal-
culated on the detected event triggers, which prop-
agates the error from event trigger detection. Also
some event tokens in text trigger two event types
(this applies to around 9% of all event triggers). In

1Our experiments have shown that dropping multi-word
event triggers from the train data improves the results on the
evaluation dataset eval since it does not contain multi-word
event triggers.

2http://cairo.lti.cs.cmu.edu/kbp/2016/event/Event-Mention-
Detection-scoring-2016-v29 Official Event Nugget Detection
and Coreference Scoring for TAC KBP 2016.

3https://github.com/hunterhector/EvmEval/releases/tag/v1.7.3
- Official evaluation scorer for the Event Nugget Detection
task.

Type Subtype
Conflict Attack
Conflict Demonstrate
Contact Broadcast
Contact Contact
Contact Correspondence
Contact Meet
Justice Arrest-Jail
Life Die
Life Injure
Manufacture Artifact
Movement Transport-Artifact
Movement Transport Person
Personnel Elect
Personnel End-Position
Personnel Start-Position
Transaction Transaction
Transaction Transfer-Money
Transaction Transfer-Ownership

Table 2: Event types in TAC 2016 Event Nugget De-
tection task.

Ex.2, for instance, the trigger ‘kill’ triggers Con-
flict.Attack and Life.Die event. Such cases are also
captured by the official scorer in the reported Event
Trigger detection (plain). That means that if there
are 100 event triggers in the evaluation document,
it is likely that 9 of them trigger 2 event types and
the scorer will expect the system to output 109 event
triggers.

(2) The terrorists killede1 [(Conflict.Attack,
ACTUAL);(Life.Die, ACTUAL)] seven and
injurede2 [Life.Injure, ACTUAL] twenty.

4 Experiments and Results

In this section we describe implementation details
and experimental setups that we have examined as
well as our evaluation results.

4.1 Event Trigger Detection

For Event Trigger Detection we used the neural net-
work architecture based on Bi-Directional LSTM
networks as shown in Figure 1. For model imple-
mentation we use the Tensorflow package (Abadi et
al., 2015). We examine different configurations and



hyper-parameters for training and evaluation of the
model.

Embeddings. For the input to the neural model we
use word embeddings retrieved for every token in
the sentence, part of speech embeddings, retrieved
for the POS tag of the token, the sum over the de-
pendency tag embeddings of all dependency triples
where the current token is the head, as well as the
sum over the token word embeddings of all tokens
which are in direct dependence of the current token.
We experiment with different combinations of using
these three types of word embeddings. If we use
more than one embedding type (Word embeddings,
PoS embeddings or Dependency sum embeddings),
we concatenate them. We also experiment with
shortcutting, by concatenating the retrieved embed-
ding representations with the output layer of the Bi-
LSTMs (see the dashed arcs in Figure 1).

Word embeddings (WE). We initialize the
word embeddings with word2vec vectors with 300
dimensions (Mikolov et al., 2013) pretrained on the
Google News 1B corpus and optimize them dur-
ing training. We also performed experiments with
randomly initialized word embeddings with various
sizes but they performed worse than the word2vec
embeddings. We initialize the words vocabulary
with all words that occur at least 5 times in the
training set. We initialize the embeddings with the
word2vec embeddings for words which are found in
word2vec or if their lower-cased version is found in
the word2vec vocabulary. All other words in the
vocabulary are initialized randomly. We also add
an UNKNOWN token which we initialize with the
centroid of all words in the word2vec vocabulary.
During training and evaluation we replace out-of-
vocabulary tokens with the UNKNOWN token.

Dependency tokens word embeddings sum
(DT). Here, every token in the input sequence we
retrieve all dependency tokens from the dependency
triples where the current token is the head and sum
them. In this sum we also include the current to-
ken (see Figure 1). Our assumption is that this way
we can present the dependency context which in the
case of event detection might be event arguments.

Part of Speech embeddings (POS). We re-
trieve a vocabulary of all POS tags in the training

data (these are usually all POS tags produced by the
Stanford CoreNLP parser). We initialize the embed-
dings randomly and optimize them during training.
For every token in the tagged input sequence we re-
trieve its POS tag embedding. We use embedding
vectors with size 30.

Dependency type embeddings sum (DEP).
We retrieve a vocabulary of all dependency type la-
bels from the parse trees in the training data (these
are usually all basic dependencies produced by the
Stanford CoreNLP parser). We use dependency type
embeddings with size 30 and we initialize them ran-
domly and optimize them during training. For every
token in the input sequence we retrieve all depen-
dency types from the dependency triples where the
token is the head and sum them.

In our model we use one Bi-Directional LSTM
(Schuster and Paliwal, 1997) layer. It consists of
left-to-right and right-to-left LSTM cells whose out-
put is concatenated for every token. In our pri-
mary implementation the left-to-right and right-to-
left LSTM cells share the same parameters. We ex-
perimented with LSTM cells with non-shared pa-
rameters but they performed worse.

Training and evaluation.

Hyperparameters. We perform experiments
with configurations of the model using various hy-
perparameters:

• Embeddings initialization. Random and initial-
ized from word2vec model. Embeddings ini-
tialized with word2vec vectors perform much
better so below we report results with this ini-
tialization type.

• Embeddings optimization. We experimented
with static word2vec embeddings and optimiz-
ing them during training. Optimization of the
embeddings performed better than using static
ones and results in much faster convergence of
the model. A reasonable explanation is that
around 10 percent of the words in the train-
ing data vocabulary are not covered in the
word2vec vocabulary and we initialize these
randomly.

• LSTM cell output size. We experiment with
different sizes of the LSTM cell such as 256,



300, 512, 600, 1024, 2048, 4096. On most per-
formed experiments LSTM with output layer
size of 512 performed well so we use this set-
ting in most of our experiments.4

• Number of training epochs. We experiment
with training our models with up to 100 epochs.
However after 10 epochs the models start to
overfit the training data, which lowers the re-
sults on the given evaluation datasets. We
therefore train the model in our further ex-
periments for up to 10 epochs. Our post-
submission experiments with evaluation on the
dev dataset has shown that best results for all
configurations are obtained after the second
epoch.

• Computing the gradients. We use AdamOpti-
mizer for computing the gradients during train-
ing with initial learning rate of 0.001. We ex-
perimented with different initial learning rates
including (0.1, 0.01, 0.001, 0.0001).

For model tuning we keep the learned parameters
from the epoch (referred to as best epoch below) on
which the evaluation of the model performs best on
the dev dataset. We evaluate the model on the eval
dataset using the saved learned parameters. We then
train a new model on train+dev datasets for 2 epochs
(optimal performance on dev) and evaluate on eval.
We re-train the model 3 times for every configura-
tion and report the result that performed best. The
results are given in Table 3. Note that in this table
we present results for event trigger detection with-
out taking into account multi-type evaluation. This
means that results in this table are higher (by around
9% ) than the plain results calculated by the official
score.

In Table 3 we can see that the best performing
configuration (in terms of F-score) uses only WE
(word embeddings) as input and short-cut with word
embeddings (WE). This configuration also yields
the best precision. The second best result model
(-0.02) uses word embeddings (WE) and direct to-
ken dependency sum (DT) in the input layer without
short-cut on to the output. The third best F-score

4Note that for the Bi-LSTM layer that we use, we have 2
LSTM cells and thus the concatenated output layer size is twice
the LSTM cell size: 512, 600, 1024, 1200 etc.

is achieved by a model that uses WE on the input
layer and WE and DT on the output layer. The over-
all F-score results show that POS embeddings and
DEP (dependency embeddings sum) does not im-
prove the model. However, using all representations
(WE, POS, DEP and DT) on both input and short-
cut on output layer we achieve the best recall.

4.2 Event Type Classification

For event type classification we build a simple model
containing only features based on word embeddings
as described in Section 2.2. For each event trigger
we extract the features mentioned above. The num-
ber of features sums up to 1800 (6 feature groups
with 300 features each). We scale the features to the
range -1 to 1. We train and evaluate a L2-regularized
Logistic Regression classifier with the LIBLINEAR
(Fan et al., 2008) solver as implemented in scikit-
learn (Pedregosa et al., 2011). For our experiments
in event type classification, we set the C (cost) pa-
rameter to 0.1. We perform experiments for event
type detection for 38 types and 18 types. In Table
5 we report the results on the gold labels only (this
does not propagate the error of event trigger detec-
tion, unlike the official scorer).

Experiments with TAC 2015 data setup. We
train the model on all event triggers with event types
from the TAC 2015 Event Nugget Detection Task in
train 2014, eval 2014, train 2015 (14948 instances)
and evaluate on all event triggers in eval 2015 (5689
instances). Results are presented in Table 5, row 1.

Experiments with TAC 2016 data setup. We
train the model on all event triggers which belong
to event type in the TAC 2016 Event Nugget Detec-
tion task selected 18 event types in train 2014, eval
2014, train 2015, eval 2015 (14899 instances) and
evaluate on the event triggers in eval 2016 (3595 in-
stances). Results are presented in Table 5, row 2.

4.3 Event Realis Classification

For the Realis classification we use the same feature
set and model as the one explained above (Section
4.2). For our experiments in realis classification, we
set the C (cost) parameter to 0.2 as it yielded best
results in 5 fold cross-validation on the train set.



In Layer Out Layer + Short-cut Precision Recall F1
Word - 57.72 59.06 58.38
Word Word 58.191 58.94 58.561
Word DEP 57.31 59.28 58.28
Word DT 57.28 59.74 58.48
Word POS 56.79 57.80 57.29
Word Word DEP 58.112 58.66 58.39
Word Word DT 57.77 59.31 58.533
Word Word POS 57.04 57.39 57.21
Word DEP - 57.08 59.55 58.29
Word DT - 57.843 59.25 58.542
Word POS - 56.53 59.34 57.90
Word DEP Word 57.24 59.67 58.43
Word DT Word 56.41 60.292 58.29
Word POS Word 55.48 59.923 57.61
Word POS DEP DT Word POS DEP DT 54.63 60.561 57.45
Word Word POS DEP DT 57.22 58.79 57.99
Word POS DEP Word 56.04 59.71 57.82
Word POS DEP DT Word 56.42 59.03 57.70

Table 3: Experiments with different feature representations on input layer and short-cut on the output layer.
Rankings of top 3 scores for each measure are shown with subscript. (Word - Word embeddings; DEP -
Dependency tag embeddings sum; POS - Part of speech tag embeddings; DT - Direct token dependencies
word embeddings sum). (This is not the same score as in the official evaluation as it does not take into
account multi-label event triggers which is the case in the official scorer.)

Micro average Macro average
Attributes Prec Rec F1 Prec Rec F1
plain 58.41 51.60 54.80 55.71 49.68 52.52
mention type 48.45 42.81 45.45 45.78 40.96 43.23
realis status 46.17 40.79 43.31 43.64 39.06 41.22
mention type+realis status 38.07 33.64 35.72 35.65 31.97 33.71

Table 4: Post-submission. This table shows results for our best post-submission system, using WE for the
input and WE short-cut on the output (official scorer results).

Setup Prec Rec F1
TAC 2015, 38 types 76.11 69.33 69.60
TAC 2016, 18 types 70.21 67.51 66.91

Table 5: Event Type classification on data setup
from TAC 2015 and TAC 2016. Macro average on
instances extracted from the gold datasets. (This is
not the same value as the official evaluation as it
does not propagates the error of event trigger detec-
tion which is calculated in the official scorer.).

Experiments with TAC 2015 data setup. We
train the model on all event triggers with event types
from TAC 2015 Event Nugget Detection Task in
train 2014, eval 2014, train 2015 (15777 instances)
and evaluate on all event triggers in eval 2015 (5689
instances). Results are presented in Table 6, row 1.

Experiments with TAC 2016 data setup. We
train the model on all event triggers in train 2014,
eval 2014, train 2015, eval 2015 (21466 instances)
and evaluate on the event triggers in eval 2016 (3595
instances). Results are presented in Table 6, row 2.



Setup Prec Rec F1
TAC 2015 69.46 61.41 64.25
TAC 2016 66.00 66.41 64.80

Table 6: Realis classification on data from TAC 2015
and TAC 2016. Macro average on instances ex-
tracted from the gold datasets. (This is not the same
value as the official evaluation as it does not prop-
agates the error of event trigger detection which is
calculated in the official scorer)

4.4 Comparison to other systems

In Table 7 we present comparison between our best
system and other top systems participating in the
TAC KBP 2016 Event Nugget Detection Task. The
in column Task, plain represents the Event Trigger
detection task, type shows results for the Event Type
disambiguation task, realis represents the Event Re-
alis disambiguation task and overall shows the result
for all attributes of event nugget detection. The re-
sults for every sub-task are ranked F1 score.

4.5 Official submissions

Above we described our experiments with various
post-submission setups which improved our results.
In this Section we discuss our official results and
experiments. Initially we trained our Event Trigger
detection model on a data setup for TAC 2015 with
event nuggets on all 38 types. In our official submis-
sions we evaluate on eval 2016 (English) with this
model. The drawback here is that this model tries
to recognize all event triggers for 38 event types in-
stead of the selected 18 event types from TAC 2016.
We then perform the Event Type and Realis classi-
fications on the extracted event triggers, trained on
event triggers over 38 event types. For the official
submissions we keep the output only for detected
events in the selected 18 types for TAC 2016. This
way we propagate the error from the Event Type
disambiguation task on the Event Trigger detection
task which explains our low official scores. We fixed
this and after the official submission we trained the
model with only 18 event types.

For the Event Type and Realis detection, for all
runs, we use all feature groups described in Section
2.2 except for the last one (averaged word embed-
ding vectors for all tokens with a direct connection

Task System name Prec Rec F1

plain

Our system 58.41 51.60 54.80
UTD1 55.36 53.85 54.59
NYU3 51.02 57.52 54.07
SoochowNLP3 58.11 45.17 50.83
LTI-CMU1 69.82 39.54 50.49

type

UTD1 47.66 46.35 46.99
Our system 48.45 42.81 45.45
LTI-CMU1 61.69 34.94 44.61
wip1 51.76 38.98 44.47
NYU3 41.88 47.21 44.38

realis

Our system 46.17 40.79 43.31
NYU2 40.53 45.07 42.68
UTD1 40.34 39.23 39.78
SoochowNLP3 43.84 34.08 38.35
wip3 42.86 32.49 36.96

overall

Our system 38.07 33.64 35.72
NYU1 33.47 37.21 35.24
UTD1 34.05 33.12 33.58
wip3 38.38 29.10 33.10
SoochowNLP3 37.26 28.97 32.59

Table 7: Comparison of our refined post-submission
system and other systems from the official evalua-
tion. Reported results are Macro-Average precision,
recall and F1 score, produced by the official scorer.

to the event trigger tokens in the dependency tree)
which we introduced later.

The approach and training datasets described
above are valid for all three runs that we have sub-
mitted. Below we describe the run specific settings
for each submission and report the official submis-
sions scores.

Submission 1. We perform Event Nugget detec-
tion with our base 1-layer Bi-LSTM model only
with word embeddings on the input layer. We use
word2vec embeddings with size 300 and LSTM
with output size 600. We trained the model on
train 2014, eval 2014, train 2015 and took the best
performing parameters snapshot for the eval 2015
dataset. We then extract Event Triggers and as-
sign them Event Type and Realis classes. For the
Event Type classification we use C=0.1 and for Re-
alis Classification we use C=0.2. This is our best
official submission.



Micro Macro
Attributes Prec Rec F1 Prec Rec F1
plain 52.89 42.06 46.85 49.49 40.50 44.55
mention type 36.83 29.28 32.62 33.58 27.96 30.51
realis status 41.57 33.06 36.83 38.35 31.42 34.54
mention type+realis status 29.94 23.81 26.53 26.98 22.33 24.44

Table 8: Official submission 1. Model trained in TAC 2015 data setup with 38 event types instead of 18.
Results are filtered in 18 types during submission export.

Submission 2. We perform Event Nugget detec-
tion with our base 1-layer Bi-LSTM model with
word embeddings and DEP embeddings with size
50 on the input layer. We use LSTM with output
size 300. We trained the model on train 2014, eval
2014, train 2015 and took the best performing pa-
rameter snapshot for the eval 2015 dataset. For the
Event Type classification we use C=1 and for Realis
Classification we use C=2.

Submission 3. We perform Event Nugget detec-
tion with our base 1-layer Bi-LSTM model with
word embeddings and POS embeddings with size
50 on the input layer. We use LSTM with output
size 300. We trained the model on train 2014, eval
2014, train 2015 and took the best performing pa-
rameter snapshot for the eval 2015 dataset. For the
Event Type classification we use C=0.1 and for Re-
alis Classification C=0.2.

5 Related Work

Most recent work in event detection includes deep
learning systems. Recent state of the art systems on
event datasets such as ACE2005 use architectures
based on Convolutional Neural Networks (Chen et
al., 2015; Nguyen and Grishman, 2015) and Re-
current Neural Network variations (Nguyen et al.,
2016a; Jagannatha and Yu, 2016). Some approaches
use multi-stage approaches for extending event de-
tection to new types via extended neural networks
(Nguyen et al., 2016b).

Earlier state-of-the-art feature-based event detec-
tion approaches include joint event extraction via
structured prediction employing global document
features (Li et al., 2013) and minimally supervised
approaches (Bronstein et al., 2015) use event type
descriptions to extract actual event triggers.

In the TAC KBP 2015 Event Nugget track best
results in event trigger detection were achieved by
a system based on deep neural networks and gradi-
ent boosted decision trees (Reimers and Gurevych,
2015) followed by robust, feature-rich pipelined sys-
tems (Zhengzhong Liu and Hovy, 2015; Yu Hong
and Ji, 2015).

6 Conclusion

With this work we participate in the TAC-KBP 2016
Event Nugget Track for Event Nugget Detection.
We implement a system which uses Bi-Directional
LSTM for Event Trigger detection and simple Lo-
gistic Regression Classifiers with event trigger con-
text features based on word embeddings for Event
Type and Realis detection.

We experiment with various configurations of our
models including using Part-of-speech and Depen-
dency tag embeddings as additional information for
our Event Trigger detection system. We perform ex-
periments with short-cuts to the output layer and we
show that they improve results. Our post-submission
model for event detection with word embeddings
short-cut on the output layer yields state-of-the-art
results on the official task dataset.

We train and evaluate our system for English and
it can easily be adapted for Chinese, Spanish or other
languages as our best model uses only word embed-
dings as external resources.

Acknowledgments. This work is supported by
the German Research Foundation as part of the Re-
search Training Group “Adaptive Preparation of In-
formation from Heterogeneous Sources” (AIPHES)
under grant No. GRK 1994/1.



References
Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene

Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado,
Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay
Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey
Irving, Michael Isard, Yangqing Jia, Rafal Jozefow-
icz, Lukasz Kaiser, Manjunath Kudlur, Josh Leven-
berg, Dan Mané, Rajat Monga, Sherry Moore, Derek
Murray, Chris Olah, Mike Schuster, Jonathon Shlens,
Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul
Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fer-
nanda Viégas, Oriol Vinyals, Pete Warden, Martin
Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang
Zheng. 2015. TensorFlow: Large-scale machine
learning on heterogeneous systems. Software avail-
able from tensorflow.org.

Ofer Bronstein, Ido Dagan, Qi Li, Heng Ji, and Anette
Frank. 2015. Seed-Based Event Trigger Labeling:
How far can event descriptions get us? Proc. 53rd
Annu. Meet. Assoc. Comput. Linguist. 7th Int. Jt. Conf.
Nat. Lang. Process. (Volume 2 Short Pap., pages 372–
376.

Yubo Chen, Liheng Xu, Kang Liu, Daojian Zeng, and
Jun Zhao. 2015. Event extraction via dynamic multi-
pooling convolutional neural networks. In ACL.

Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui
Wang, and Chih-Jen Lin. 2008. Liblinear: A library
for large linear classification. J. Mach. Learn. Res.,
9:1871–1874, June.

Abhyuday N. Jagannatha and Hong Yu. 2016. Bidi-
rectional rnn for medical event detection in electronic
health records. In HLT-NAACL.

Qi Li, Heng Ji, and Liang Huang. 2013. Joint Event
Extraction via Structured Prediction with Global Fea-
tures. Proc. 51st Annu. Meet. Assoc. Comput. Linguist.
(Volume 1 Long Pap., pages 73–82.

Christopher Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven Bethard, and David McClosky.
2014. The Stanford CoreNLP Natural Language Pro-
cessing Toolkit. In Proceedings of 52nd Annual Meet-
ing of the Association for Computational Linguis-
tics: System Demonstrations, pages 55–60, Baltimore,
Maryland, June. Association for Computational Lin-
guistics.

Todor Mihaylov and Anette Frank. 2016. Discourse Re-
lation Sense Classification Using Cross-argument Se-
mantic Similarity Based on Word Embeddings. In
Proceedings of the Twentieth Conference on Compu-
tational Natural Language Learning - Shared Task,
pages 100–107, Berlin, Germany. Association for
Computational Linguistics.

Todor Mihaylov and Anette Frank. 2017. Story cloze
ending selection baselines and data examination. In

Proceedings of the Second Workshop on Linking Mod-
els of Lexical, Sentential and Discourse-level Seman-
tics Shared Task, Valencia, Spain. Association for
Computational Linguistics.

Todor Mihaylov and Preslav Nakov. 2016. SemanticZ
at SemEval-2016 Task 3: Ranking relevant answers in
community question answering using semantic simi-
larity based on fine-tuned word embeddings. In Pro-
ceedings of the 10th International Workshop on Se-
mantic Evaluation, SemEval ’16, San Diego, Califor-
nia, USA.

Tsvetomila Mihaylova, Pepa Gencheva, Martin Boy-
anov, Ivana Yovcheva, Todor Mihaylov, Momchil
Hardalov, Yasen Kiprov, Daniel Balchev, Ivan Koy-
chev, Preslav Nakov, Ivelina Nikolova, and Galia An-
gelova. 2016. SUper Team at SemEval-2016 Task 3:
Building a feature-rich system for community question
answering. In Proceedings of the 10th International
Workshop on Semantic Evaluation, SemEval ’16, San
Diego, California, USA.

Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig.
2013. Linguistic regularities in continuous space word
representations. In Proceedings of the 2013 Confer-
ence of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Language
Technologies, NAACL-HLT ’13, pages 746–751, At-
lanta, Georgia, USA.

Thien Huu Nguyen and Ralph Grishman. 2015. Event
detection and domain adaptation with convolutional
neural networks. In ACL.

Thien Huu Nguyen, Kyunghyun Cho, and Ralph Grish-
man. 2016a. Joint event extraction via recurrent neu-
ral networks. In HLT-NAACL.

Thien Huu Nguyen, Lisheng Fu, Kyunghyun Cho, and
Ralph Grishman. 2016b. A two-stage approach for
extending event detection to new types via neural net-
works.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duches-
nay. 2011. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–
2830.

Nils Reimers and Iryna Gurevych. 2015. Event nugget
detection, classification and coreference resolution us-
ing deep neural networks and gradient boosted deci-
sion trees. In Proceedings of the Eighth Text Analysis
Conference (TAC 2015).

M. Schuster and K.K. Paliwal. 1997. Bidirectional recur-
rent neural networks. Trans. Sig. Proc., 45(11):2673–
2681, November.



Dian Yu Xiaoman Pan Lifu Huang Yu Hong, Di Lu and
Heng Ji. 2015. Rpi blender tac-kbp2015 system de-
scription. In Proceedings of the Eighth Text Analysis
Conference (TAC 2015).

Dheeru Dua Teruko Mitamura Zhengzhong Liu,
Jun Araki and Eduard Hovy. 2015. Cmu-lti at kbp
2015 event track. In Proceedings of the Eighth Text
Analysis Conference (TAC 2015).


